Unit 1: Negative numbers, opposites, absolute value Lesson 02 Inequalities

Example 1: Locate 7 on a number line and then locate its opposite.

The **absolute value** of a number (indicated with vertical bars, |4|) is the distance of a number from the origin. The absolute value of a number is **always positive**.

Example 4: |-4| = ?

-4 = 4

When an expression is inside an absolute value,

- simplify the expression with PEMDAS (down to a single number),
- and then take the absolute value of that number.

Example 5: $|9 - 2 \cdot 3|$

$$|9-2\cdot 3| = |9-6| = |3| = 3$$

Example 6: In the following table, fill in the blank areas with the appropriate integer that best describes the phrase, its opposite, and its absolute value.

Description	Integer	Opposite	Absolute
			value
A price increase of \$4	4	- 4	4
Ten degrees below freezing	- 10	10	10
A bank deposit of \$40	40	-40	40
3 points off on a test question	-3	3	3
	-		
A five point bonus on a test	5	-5	5

Any number, *a*, that lies to the **left** on a number line of another number, *b*, is said to be **less** than *b*:

a < b (read this as, "a is less than b.")

Any number, *c*, that lies to the **right** on a number line of another number, *d*, is said to be **greater** than *d*:

c > d (read this as, "c is greater than d.")

An easy way to remember the **symbols** of these **inequality** relationships is, "The alligator eats the big one."

Use the number line above to fill in the appropriate symbol (< , >, or =) in the blanks in the examples below. Give the reasons for your choices.

Example 7:	-4	<	-2	because -4 lies to the left of -2
Example 8:	1	>	-2	because 1 lies to the right of -2
Example 9:	b	>	а	because b lies to the right of a
Example 10:	а	<	С	because a lies to the left of c
Example 11:	-2	=	2	because absolute value is always positive

Consider -2 on a number line as seen at the top of this page. It is represented to the **left** of the origin since it is a negative number. The point *b* is also to the left of the origin, so what would be the meaning of -b?

The meaning of the **negative of a variable** is that it is the **opposite** of that variable.

Example 12: Redraw the number line at the top of this page and locate – C.

Example 13: Redraw the number line at the top of this page and locate -b.

Assignment:

 Locate –8 on a number line and then locate its opposite. 	2. Locate 6 on a number line and then locate its opposite.
-8 0 8 Optosite 5-8	-606 opposite of 6
3. Locate –4 on a number line and then locate its absolute value.	4. Locate 2 on a number line and then locate its absolute value.
-4 0 4 -4 = 4	$\begin{vmatrix} 2 \\ 2 = 2, \\ some place$
5. How far from the origin is $ -10 $?	6. What is the value of $7 - -7 $?
	7- -7 = 7-7 = 0
7. Simplify 17 – 6 – 1 .	8. Simplify $ (17 - 6 - 1)/2 $.
17-6-1 = 11-1 = 10 = 10 = 10	(17-6-1)/2 = (11-1)/2 = 10/2 = 5 = 5

9. Simplify |-2| + 6 - 7

|-2|+6-7= 2+6-7 = 8-7 = 1

10. Simplify
$$(5 + |-17|) - 3^2$$

 $(5 + |-17|) - 3^2$
 $= (5 + 17) - 3^2$
 $= 22 - 9$
 $= 13$

11. In the following table, fill in the blank areas with the appropriate integer that best describes the phrase, its opposite, and its absolute value.

Description	Integer	Opposite	Absolute value
A 15 yard penalty	-15	15	15
An 11 yard gain	11	-11	11
A bank withdrawal of \$36	-36	36	36
8 points off on a test question	-8	8	8
Thrown for a loss of 3 yards	-3	3	3
4 points above average	4	-4	4

Use the number line above to fill in the appropriate symbol (< , >, or =) in the blanks in the examples below. Give the reasons for your choices.

12.	5 <u>></u> -15	because 5 lies to the right of -15
13.	-15 < -10	because -15 lies to the left of -10
14.	x <u><</u> y	because x lies to the left of y
15.	z <u>></u> 0	because z lies to the right of o
16.	-10 > -10	Because $ -10 = 10$ & is to the right of -10
17.	0 <u>></u> x	because o is to the right of x
18.	y <u>=</u> 5	Because $ y $ is 5 units to the left of 0 & = 5
*19.	-x <u>></u> y	because $-x$ is the opposite of x

20. Redraw the number line given on the previous page and locate – y.

21. Redraw the number line given on the previous page and locate -z.

