

Calculator Appendix J (Graphing inequalities in two variables)

Consider the display of the following inequality on a graphing calculator.

$$
x+2 y \geq 3
$$

The first step is to solve for y :

$$
y \geq(-x+3) / 2
$$

Press the $\mathbf{Y}=$ button on the calculator and enter $(-x+3) / 2$ for $\mathbf{Y} \mathbf{1}$. Press GRAPH and observe that a line is graphed:

In order to turn this into a true inequality with a shaded region, use the LEFT ARROW to move the cursor to the left of $\mathbf{Y}_{1}=$. Once the cursor is in that position, repeatedly press ENTER until this icon (v) appears. This causes the function (in this case a line) to be shaded above. Press GRAPH again and shading will be observed above the line.

To graph the inequality $\mathrm{y} \leq(-\mathrm{x}+3) / 2$ which will require shading below the line, use the LEFT ARROW to move the cursor to the left of $\mathbf{Y}_{1}=$. Once the cursor is in that position, repeatedly press ENTER until this icon (-) appears. Press GRAPH and shading will be observed below the line.

WIFIOU
Xmin=-10
人 $\mathrm{max}=10$
$\mathrm{ySC}=1$
Mirlo
$y \leq 01=1$
Xres=1

Similarly, the icons and will result in any function (not just lines) being shaded respectively above or below the graph.

Think of it this way:

$$
\begin{aligned}
& \text { With }, ~ Y 1=\ldots \text { effectively becomes } Y 1 \geq \ldots \text {, and } \\
& \text { With \& }, Y 1=\ldots \text { effectively becomes } Y 1 \leq \ldots
\end{aligned}
$$

