
Inequality conjunctions and disjunctions

Consider the inequality conjunction: $-5 < x \le 7$ This is equivalent to -5 < x and $x \le 7$ where the "and" implies an intersection (overlap) of the answers from each part.

Example 1: Draw the values of x given by $-5 < x \le 7$ on a number line.

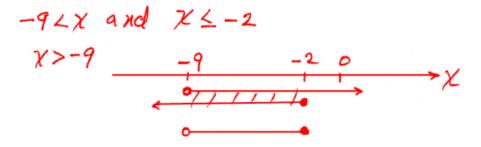
In a similar way $3x - 5 \le 2 < x + 1$ is an inequality conjunction that can be separated into two parts: $3x - 5 \le 2$ and 2 < x + 1 where, again, the "and" is implied. **Example 2:** Solve $3x - 5 \le 2 < x + 1$

An inequality **disjunction** is always written with an **explicit** "**or**" (with a conjunction, the "and" is often implied) and typically looks like this:

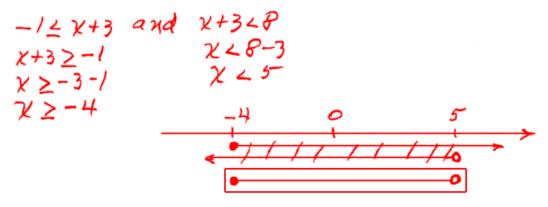
(Inequality statement #1) or (Inequality statement # 2)

The "or" indicates that the **union** is to be taken of the answers from both parts. The union, in turn, means to "take everything".

Example 3: Find the solution to x + 2 < 1 or $2x + 6 \le -4$



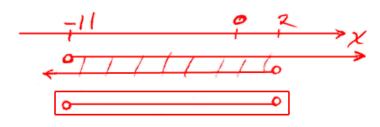
Assignment:


1. Separate $-5 < x \le -17$ into two different inequalities.

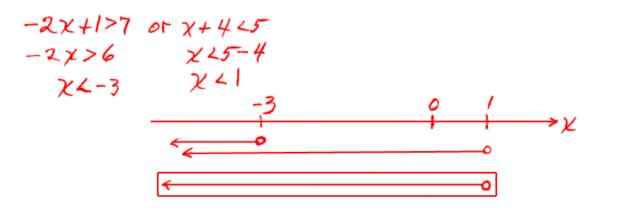
-5-1× and × 1-17

2. Separate $-9 < x \le -2$ into two different inequalities and then graph the indicated values of x on a number line.

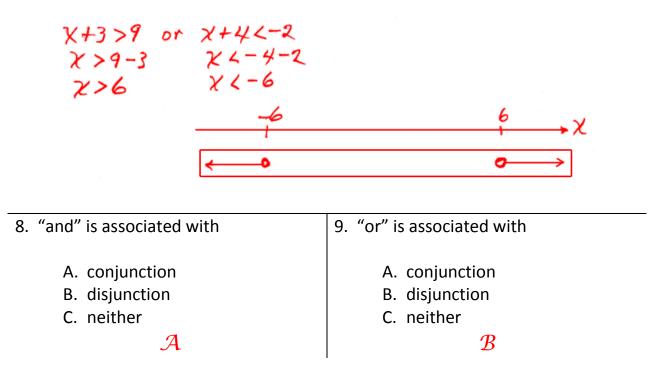
3. Separate $-1 \le x+3 < 8$ into two different inequalities and then graph the indicated values of x on a number line.



4. Graph the indicated values of x on a number line for this inequality disjunction: x > 2 or x < -8



www.bluepelicanmath.com


5. Graph the indicated values of x on a number line for this inequality conjunction: x > -11 and x < 2

6. On a number line graph the values of x indicated by these inequalities: -2x + 1 > 7 or x + 4 < 5

7. On a number line graph the values of x indicated by these inequalities: x + 3 > 9 or x + 4 < -2

