

```
Read the symbol, >, "greater than."
```

Read the symbol, <, "less than."

If *a* lies to the left of *b* on a number line, then we can make the statement, **a < b.** (**Read this, "***a* **is less than** *b***.")**

If x lies to the right of y on a number line, then we can make the statement, x > y. (Read this, "x is greater than y.")

Just remember, "The alligator eats the big one."

Example 1: Express "x + 3 is greater than 2y" in symbols.

x+3>2y

Example 2: The number represented by *m* lies to the right of the number represented by *n* on a number line. Express the inequality relationship between *m* and *n* using "<".

n < m

When graphing x > a or x < a on a number line just remember that the "inequality arrow" is in the **same direction** as the "graph arrow" (only true when the **variable is on the left side)**.

Graph with an **open circle** as illustrated in the example below.

Example 3: Sketch the graph of x < –5 on a number line.

Read the symbol, \geq , "greater than or equal to."

Read the symbol, \leq , "less than or equal to."

Graph with a **solid circle** as illustrated in the example below.

Example 4: Sketch the graph of $x \ge 4$ on a number line.

Adding (or subtracting) a number to both sides of an inequality:

Suppose *a* and *b* are related by the inequality, then

a > b

When the quantity *c* is added to both sides, the result is

a + c > b + c

Multiplying (or dividing) a number times both sides of an inequality:

Suppose *a* and *b* are related by the inequality, then

a > b

When the quantity c is multiplied by both sides, the result is

a(c) > b(c) if c is a **positive** number.

a(c) < b(c) if c is a **negative** number (Note the **reversal** of the inequality symbol.)

Example 11: Which of the following set of x values is a solution to the inequality of Example 10? $\{-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6\}$

{-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4}

1. Express " <i>f</i> is less than or equal to <i>m</i> " in mathematical symbols.	2. Express " <i>z</i> is greater than <i>v</i> " in mathematical symbols.
 Express x ≤ k in words. 	4. Express w > z in words.
5. Rewrite the inequality f < g after subtracting 3 from both sides.	6. Rewrite the inequality x ≥ y after dividing both sides by – 6.
7. Rewrite the inequality m ≥ n after multiplying 4 times both sides.	8. Rewrite the inequality p ≤ q after adding 2 to both sides.

Assignment:

9. Sketch the graph of x < 6 on a number line.	10. Sketch the graph of x ≥ –7 on a number line.
11. Sketch the graph of x ≥ 2.5 on a number line.	12. Sketch the graph of x < −3 on a number line.
13. Write the inequality that describes this graph.	
14. Write the inequality that describes this graph.	
-10	Х

15. Which of the following set of <i>x</i> values is a solution to the inequality of problem 13?	16. Which of the following set of <i>x</i> values is a solution to the inequality of problem 14?
{- 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}	{- 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}
17. Express "p could be equal to 5; however, it could also be less than 5" in mathematical symbols.	18. Rewrite 2g ≥ 11f after dividing both sides by -13.
19. Express m ≤ n in words.	20. Sketch the graph of x < 0 on a number line.